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Abstract. This paper sets out to identify a means to mitigate the effects of unpredictable 

failures in complex systems.  It outlines a formal analysis of complex systems that focuses on 

emergent system dynamics, some of which may be failure modes that are impossible to predict.  

The mathematical basis for the analysis, and some real-world implications of the mathematics 

are introduced.  From that same formal analysis, the paper identifies specific characteristics of 

system architecture to mitigate the risk of emergent failure modes.  The paper concludes with 

an approach to mitigating the effects of EFM predicated on a principle-based process 

architecture called intelligent control theory. 

Introduction 

System failures can be highly visible reminders that much remains to be done to achieve strong 

system design and implementation of complex technology.  This section starts with a brief look 

at several highly visible systems failures, and introduces emergent failure modes (EFM) as a 

way to frame analysis of those failures.  The paper subsequently reviews principles that form 

the basis for its conclusions.   

On 15 August 2015, a significant outage occurred at Leesburg Air Route Traffic Control 

Center (ZDC), resulting in some 400 commercial flights being canceled in the northeast sector, 

with impact on traffic at other airports as far away as Dallas and Los Angeles (Ortiz, 2015).  

The proximal cause of that outage appears to have been an error during a planned software 

maintenance event.  From a commonly held perspective, this catastrophic failure event may be 

attributable to a conventional software glitch.  The approach that evolved in real-time led to a 

decision to disable the updated functions until a solution could be developed.  Subsequent 

analysis concluded that the system failure during the ZDC upgrade was a function of an 

unanticipated set of interactions between the software and the user community.  It is highly 

unlikely that the exact conditions of the incident could have been fully anticipated prior to the 

deployment.  An analogous problem emerged recently, when Microsoft introduced an artificial 

intelligence (AI) “chatbot” system designed to conduct discourse with humans over Twitter 

(Dobuzinskis, 2016).  The product was disabled after only one day of service because it began 

to veer into vulgar and racist topics. 

Preliminary indications from the these incidents suggest that additional testing of software may 

have been required prior to deployment.  It is seductive to treat these and similar events as the 

result of poor management, however, the details of the analysis below should serve to make the 

point that no amount of testing can guarantee that a complex system will not fail.  This is 

especially true for testing under conditions that can only be generated with large numbers of 
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humans in the loop.  Unfortunately, these examples do not reflect new, or even unique 

problems.  Specific operational examples of interactions in complex systems that result in 

catastrophic outcomes are readily found in other domains, such as the March 28, 1979, Three 

Mile Island (TMI) accident in which human operator error interacted with system failures to 

convert a complex but routine maintenance activity into a lingering national nightmare.  A 

combination of equipment malfunctions, design-related problems and worker errors led to a 

partial meltdown and very small off-site releases of radioactivity at TMI-2 (Nuclear Regulatory 

Commission, 2013).  Both Space Shuttle accidents, Challenger (Committee on Science and 

Technology, 1986) and Columbia (Columbia Accident Investigation Board, 2003), were 

caused by known systemic issues.  Neither was a complete surprise to human decision makers.  

Even as Columbia was breaking up in the upper atmosphere, engineers were discussing the 

icing incident that occurred at launch, more than two weeks earlier, as the most likely (and 

ultimately acknowledged) proximal cause.   

The partial power outage during Super Bowl XLVII, in New Orleans in 2013, is yet another 

example: everything worked as advertised, but when the lights went out, 70,000 people were in 

immediate jeopardy as over 108 million people watched on television.  Outages of electric 

power systems happen locally, occasionally on a national and even international scale.  During 

an outage in 2003, the populous US northeast and the entire Canadian province of Ontario went 

dark when a software glitch combined with a routine maintenance issue, and the problem 

propagated rapidly across the grid. 

Conventional wisdom is to treat each of these incidents as low probability events that could or 

should have been foreseen by system operators, designers and acquisition program managers.  

Often ex post facto punitive actions are taken against individuals involved, and/or higher 

echelon decision-makers.  But unforeseen and unforeseeable emergent failure modes (EFM) in 

complex systems may be responsible for these accidents and incidents.  Further, this paper 

shows that there are specific things the systems engineering (SE) process can do to mitigate the 

risk and effects of EFM.  

Emergent Behavior in Complex Systems  

Emergent behavior (EB) is ubiquitous and unavoidable. EB is the evident and inevitable global 

result of local interactions.  Weather is emergent, as are conversation, driving, and molecular 

gastronomy among other things.  These EB are beneficial and in systems may be touted as 

features.  However, EB can also bring forth detrimental outcomes resulting in incidents, 

accidents and other disruptive effects.  The ubiquity of EB in complex systems brings its own 

complexity.  The networking of systems, as well as the development of systems of systems, 

generates a rich environment from which EB arise.  Some of the resulting EB may be failure 

modes -- EFM.  EFM may take a variety of forms; they may put the system into an unknown, 

perhaps unrecoverable state, or they may allow routine technical operations to cascade to 

failures.  While these failures will appear to stem from hardware or software root causes, their 

emergent nature is the aspect that leads to catastrophic failure. 

Large-scale infrastructure components are not intentionally designed to be unstable or to be 

vulnerable to catastrophic failure, yet, catastrophic failures do occur.  Such failures may not 

become apparent in design, development, test and evaluation, or even for some time after initial 

operational capability.  Risk of low probability events with high negative consequence is often 

mitigated during acquisition programs through reliance on favorable probabilities.  For 

example, Failure Modes and Effects Analysis (FMEA), a core tool in the systems engineer’s kit, 

is predicated on estimating probabilities in so-called “forward logic.”  That is, one goal of 



 

FMEA is to ensure that the likelihood of an adverse event is estimated to be low enough to 

rationalize devoting minimal resources to counteract or mitigate it.   

One might argue that loosely coupled Service Oriented Architecture (SOA) of many 

current-generation and future infrastructure systems – the Systems of Systems (SoS) -- are 

completely different from the highly integrated tightly coupled systems, such as the Space 

Shuttle.  Nevertheless, in the SOA/SoS context, interactions and connections within an 

Enterprise Architecture (EA) are no less real.  They are simply less visible.   

Indeed, it is useful to consider that a taxonomy of complex systems might vary along a 

dimension of how highly integrated they are, or the extent to which they depend on physical, as 

opposed to logical connectivity among critical components.  We argue here that it does not 

matter for purposes of systems engineering.  All complex systems, no matter their architecture 

or governance model, are vulnerable to EFM.  Systems that are realized by logical connections, 

i.e., all current- and future-generation systems of any significance, are most vulnerable.   

An important distinction can be made between legacy, point-to-point systems architectures and 

the SOA/SoS approach.  Complex legacy systems (e.g. the current-generation National 

Airspace System) are much more rigid than SOA systems because components are much more 

tightly coupled by the point-to-point character of their physical interfaces.  The very important 

advantage of a SOA is its inherent flexibility.  That flexibility is realized precisely because of 

the loose, flexible, logic-based (as opposed to physical) connection among components.  New 

interfaces can be defined in software and data structures, rather than requiring the laying of 

copper or fiber in a conduit.  It is relevant to recall that the origin of the terms hard-ware and 

soft-ware was based in the perceived advantageous flexibility of the new medium for 

controlling computation.  The term firm-ware emerged as a further refinement of that basic 

notion of flexibility.  

Nevertheless, that inherent flexibility has turned out to be a two-edged sword.  The proportion 

of acquisition costs attributable to software (i.e., logical connections) is likely to increase as 

computing hardware costs continue to decline.  Software is also much more likely to result in 

systemic failures than would the failure of a particular hardware component.  Consider that 

while legacy point-to-point systems have failed, the rate of propagation of failure is often 

sufficiently slow to allow for real-time response to limit damage.  An SOA system such as the 

emerging electric power Smart Grid, on the other hand, can fail catastrophically, and such 

failures can propagate across continental boundaries at nearly the speed of light (Harris and 

Narkevicius, 2014).   

An SOA will exhibit interactions that derive entirely from invisible, and often undocumented 

logic embodied in the software, rather than readily visible (and maintainable) physical 

connectivity.  This problem is particularly relevant because of the logically integrated character 

of any SOA-type system.  The broader enterprise architecture entails significant risks, many 

known, some unknown, and some unknowable until they materialize in the deployed context. It 

can be stated, with near mathematical certainty, that complex systems-of-systems will exhibit 

failure modes that emerge from the architecture of loosely coupled networks.  It can further be 

stated, with absolute mathematical certainty, that complete specification of all such failure 

modes is impossible.  When failures occur in complex networks, rapid, accurate assessment of 

the failure, its genesis, its trajectory, its consequences, and its correction are essential.  The 

challenge of maintaining system integrity requires a very different set of skills from those 

required to maintain legacy systems, in addition to new technical resources to collect the best 

data, synthesize those data, induce the nature of the failure, and implement corrective action(s).  



 

Mathematical Basis 

The mathematical basis for our strong assertions about EFM is organized around two key 

concepts: principles of emergent properties in complex systems and the central role of models 

and modeling in control systems and processes.  These topics are addressed below. The math 

proves that no amount of engineering and governance can ensure that the emerging SOA-based 

architectures will never experience a catastrophic system-wide failure.  Other solutions will be 

required to mitigate that risk.  Analysis of the central role of models in the control process 

points to a practical system architecture to mitigate the effects of EFM. 

It is generally recognized that complex systems cannot yet be fully represented and analyzed 

mathematically by simple partial differential equations or other analogous mathematical tools.  

This assertion may seem obvious, but the implications are important.  While such tools are 

useful for characterizing some aspects of complex system behavior, they are not sufficient.  

What is needed is an appropriate mathematical formalism for representing such systems.  Since 

we lack such formal tools, complex systems are analyzed through simulation.  It is widely 

recognized within the simulation technology base, that the results of simulation depend heavily 

on the quality of the models and the information used to set up and run the simulations: i.e.,  

“garbage in, garbage out”.  Indeed, the very notion of validating a simulation is no longer 

accepted practice in the defense industry, arguably one of the most mature of simulation 

technology bases.  Current practice is to focus on accreditation.  This appropriately nuanced 

approach is a pragmatic response to the fundamental limits of simulation.  

Model-Based Engineering (MBE) reduces life cycle costs of major systems by depending 

heavily on simulation.  There is no doubt that simulation is an important tool for systems 

engineering.  The need for improved engineering methods and tools motivates the continuing 

desire for improved rigor in Modeling and Simulation (M&S) technology.  Perhaps the most 

important recent advances in M&S are concepts and mathematical tools that bring a more 

rigorous framework for modeling and analyzing complex systems.   

The appropriate mathematical construct for analyzing discrete simulations of dynamical 

systems is called a sequential dynamical system (SDS).  SDS is the mathematical formalism 

that underlies all digital simulation.  Several fundamental observations about complex systems 

can be stated with mathematical precision using the formalism of SDS.  For present purposes, 

we focus on simple properties and observations about SDS (Harris and Narkevicius, 2014). 

An SDS can be thought of as analogous to a movie, a sequence of discrete snapshots of system 

state, played back (computed) to reveal motion (dynamics).  The point of watching a movie is 

not to see the details in each individual frame but to discern the entire story.  In fact, human 

vision is incapable of perceiving each individual frame when the movie is running.  Rather, the 

movie is carefully tuned to properties of human observers to facilitate integrating across the 

discrete frames to perceive motion.  Motion is dynamics; change in state as a function of time.  

An SDS is a finite state machine that transitions from state to state in a sequence of discrete 

steps to reveal to an observer the dynamical properties of a system.  Analysts can learn things 

about complex systems in the abstract by exercising SDS constructs.  The fundamental 

properties of SDS are readily extrapolated to complex systems.   

Graph Theory, SDS Constructs and Notation 

A system is defined (by various authorities) as a collection of interacting elements whose 

interactions are organized around a common goal or principle (INCOSE, 2015).  A network is 

generally defined in terms of a collection of interacting elements, representing the structure, 



 

without reference to the processes that govern behavior.  SDS are, in effect, an extension of 

basic network graph theory to account for individual (local) behavior and provide a basis for 

examining and predicting global (systemic) behavior.  The approach outlined here is derived 

from a basic text (Mortveit and Reidys, 2008).  The purpose of the present treatment is to 

develop the mathematical basis sufficiently to derive implications and requirements for dealing 

with EFM.  The approach is a logical and provable extension from the foundations, and, as such, 

it can be tested and evaluated in its own right. 

A network is represented mathematically as a graph G = (V, E) comprising a set of vertices V = 

{v1, v2, …, vn} (also called nodes), and a set of links or edges E = {e1, e2, ..., en} connecting 

the vertices.  The number of vertices n is called the order of the graph, and denoted |V|.  The 

number of edges k is called the size of the graph, and denoted |E|.  Two nodes connected by an 

edge are said to be neighbors. 

 

Figure 1.  Illustration of a network G = (V, E). 

A network described by the notation G= (V,E) is illustrated in Figure 1.  A graph such as 

depicted in the figure is a static structure.  One may easily see that a complex system could be 

usefully represented as a (very complex) network structure, and that interesting observations 

might be made on the representation.  However, it would be difficult (impossible, actually) to 

derive and predict system performance solely from such a static representation. 

Much research on SDS is focused on formally representing the dynamical properties of 

systems such as illustrated in Figure 1.  This representation indicates both how the system 

behaves, and how underlying graph structure influences the behavior.  Measures of graph 

structure and behavior (dynamics) can be derived from the SDS formalism.   

A particular collection of states of the nodes of the system is called a configuration (analogous 

to a single frame in a movie) of the system.  The set of all configurations into which a system 

may transition is called the system’s phase space (analogous to a particular editor’s cut of a 

movie; other editors might include different frames for an entirely different movie).  A phase 

space can be depicted as a directed network graph (a digraph).  The phase space captures some 

(but not all) important aspects of the dynamical properties of the system it represents.  For 

example, consider the phase space of a dynamical system, illustrated in Figure 2.  A more 

complete treatment of this topic may be found in Mortveit and Reidys (2008). 

Each node in the phase space graph (Figure 2) represents a configuration of the system, all of 

the states of all of the nodes in the graph, taken at a point of time (like a frame in a movie).  So, 

for example, in a 3-node graph, the states of the three nodes might be represented by the node in 

the far left of Figure 2 as {n1, n2, n3} = {0,0,1}.  When the system (i.e., the complete set of nodes 

n1, n2 and n3) transitions to a new state, the nodes might assume the values {0,1,1}, as illustrated 

in the node to which the arrow from the first node is pointing.  

This figure illustrates all of the possible transitions for a particular 3-node network, where the 

individual transition functions f1, f2, and f3, are defined explicitly, and the updates to those 

states are calculated in a particular order.  (The issue of update order is discussed in greater 



 

detail below.)  An important property of this particular system is that all transitions lead to a 

cycle.  That is, irrespective of the beginning states, if this system is allowed to evolve according 

to its defined transition functions, updated in a particular order, it will eventually end up in a 

part of the phase space from which it cannot emerge – the cycle from {0,0,0} to {0,0,0}.   

 

Figure 2.  Phase space of a simple 3-node graph. 

SDS is a formal extension of graph theory into the realm of system dynamics in an effort to 

support rigorous analysis of complex real-world networks using constructs that describe and 

elaborate transitions among states such as illustrated in Figure 2. SDS extends the graph 

notation introduced above by incorporating a formal definition of state change.  An SDS is 

denoted as a triple (see next paragraph) to accommodate this additional parameter and to 

expose complex system behavior to formal representation and rigorous analysis.  The figure is 

useful as a tool to visualize the dynamics of the system it represents.  Patterns of transitions 

among configurations are readily evident, such as, the loop in dynamics of the system.   

Formally, an SDS S over a given domain D of state values (i.e., states that can be assumed by 

nodes) is denoted as a triple (G, F, π), where G(V,E) is an undirected graph and for each node i 

of G, F specifies a local transition function fi.  F, in short, is a set of transition functions {f1, f2, 

…, fn}.  Those transition functions may be the same for all nodes (defining a homogeneous set 

of nodes), or they may be defined uniquely for each individual node, thereby characterizing 

complex systems comprising heterogeneous nodes.  Transition functions provide mappings of 

current states of nodes to new states as a function of the states of neighboring nodes. 

The parameter π in the triple (G, F, π) denotes the set of permutations of order of update for the 

nodes.  Informally, the order of update is the particular sequence of updates of the states of 

nodes.  This parameter turns out to be extremely important when analyzing discrete systems.  

The significance of update order π for interpreting the results of a simulation run become quite 

apparent in the analysis of elementary networks such as illustrated in Figure 3.  The behavior of 

the four-node network in the upper left of Error! Reference source not found. is illustrative. 

In this example, the four nodes of the Circ4 network of Error! Reference source not found., 

denoted 1, 2, 3, and 4, all may assume only one of two states, denoted 0 and 1.  They all behave 

according to the same transition function, when allowed to update, they assume the state 

defined by the logical Nor (not-Or) of the states of their neighbors.  Therefore, node 1 will 

assume the state defined by Nor(1,2,4), that is, the Nor of the states of nodes 2 and 4. 

 

Figure 3.  Phase spaces of Circ4 network. 



 

A portion of the phase space of the Circ4 system is illustrated in  Figure 3 for two different 

permutations of update order.  Since all four nodes may assume either of two states (0, 1), the 

total number of possible states that the system might assume is 24 (16).  For any given 

permutation, beginning with one state of the system, such as {0,0,1,1}, it can be seen that the 

new states that can be assumed by the system depend on the permutation of update order.  If the 

four nodes are updated in the order 1,2,3,4, the system will transition in the fashion illustrated 

in the upper right-hand of the figure.  Configuration {0,0,1,1} transitions to {0,0,0,0}, and 

thence around the loop.  If, on the other hand, the update order is 1,3,2,4, the system may 

assume any of three different phase spaces, depicted in the lower portion of Figure 3.  In fact, 

the state {0,0,1,1} is not seen in 2 of the 3 phase spaces.   

Moreover, it is not possible for the system to transition from one phase space to another.  If the 

nodes begin life in the states {0,0,1,1} they may only transition to the configuration {1,0,0,0}.  

If, on the other hand, the nodes begin life in the configuration {0,1,1,0}, the system will remain 

in the left-hand phase space, and will never transition to the phase in the center of the figure. 

For a simple system such a Circ4, it is feasible to calculate all 16 possible states and all state 

transitions.  Since there are four nodes, there are 24 possible permutations π (4!) of update 

order.  As we have seen, each update order π can generate a unique set of phase spaces.  

Clearly, for a simple system we can just generate all possible outcomes.  However, for a just 

slightly more complex system, say 50 nodes, the problem is unsolvable.  The number of 

permutations would be 50! (Factorial), more than the number of elementary particles in the 

known universe rendering the calculation impossible: there aren’t enough storage places to 

save the results.  Each permutation, recall, prescribes an ordering of step in transition from one 

configuration (snapshot of states) to another.  While many of the phase spaces so generated 

might be identical, there is (as yet) no way to confirm that except to generate them and see.   

There is nothing magical about either the particular transition function in this example (nor), or 

the particular 4-node network Circ4.  This example is useful because it illustrates a 

fundamental limitation to present-day mathematics.  We do not now have the mathematical 

tools to predict the behavior of a simple system such as Circ4.  The only way to identify the 

phase spaces of the Circ4 is to generate them; i.e., to generate the system and observe the result.   

The primary motivation for delving into the SDS formalism is the insight it provides to inform 

the planning for failure modes in complex systems.  The conclusion should be self-evident, we 

do not have the formal mathematical tools to analyze and predict the behavior of complex 

systems, but the tools we do have prove conclusively that complex systems can enter into 

regimes that cannot be predicted with any degree of mathematical or statistical certainty.  

Consider that the analysis of Circ4 above is focused on an extremely simple network; it does 

not speak to the interactions among layers of networks.  Ongoing research indicates that the 

prospect of emergence within a complex network also holds for interactions across and among 

layers of networks (cf Galsyan, Kianercy, and Allahverdyan, 2010).  A generally accepted 

perspective is that most real-world networks are complex dynamical systems in which both 

nodes and network topology can have inter-coupled dynamics that affect network structure and 

vice versa.  Real-world networks are not static structures.  Rather, they change over time.  

Connections between nodes may be established and destroyed as a function of system states.  

Such change in structure (e.g., connections between nodes) is another form of dynamics.  

Changes in structure affect generated phase spaces.  Layers of evolving networks influence 

each other at the points of contact between the layers.  Such influence also exhibits dynamics.  



 

These aspects of real-world networks are reflected in the maturing mathematical formalisms 

built up around SDS and related constructs. 

Emergence in Real Systems 

The purpose of this paper is to frame an approach for practitioners to confront and cope with 

systems failures that arise from interactions --- that is, emergent failure modes.  The treatment 

of Circ4 is instructive because it illustrates a how severely limited our understanding is of such 

phenomena.  We can only generate complex systems (we call it simulation) in order to observe 

how they behave (and fail).  We do not have the tools to analyze them rigorously and predict 

such failures.  A rigorous treatment of the notion of emergent phenomena is not yet possible 

because the concept is not yet fully specified with mathematical precision.  We believe the 

successful approach will be a fusion of the SDS concept outlined above and the intelligent 

control theory discussed below, but this is an area for continuing research.   Instead, we offer an 

intuitive discussion to set the stage for our proposed approach to redress the effects of EFM. 

Consider highway traffic congestion.  Congestion in a particular location arises because of 

local interactions among relatively homogeneous objects.  One car slows down (for whatever 

reason), and the following car also slows down; and the one following that car slows down, ad 

infinitum.  The following car(s) may have no insight into what caused the lead car(s) to slow 

down; the following driver(s) simply responded to the change in state of the lead driver(s). 

Such congestion is illustrative of the concept of emergence.  The locus of the congestion and its 

bounds can be observed from a traffic helicopter.  The congestion has physical extent and 

manifestation; it has causal relations with lower level abstractions and even individual drivers.  

On the basis of traffic reports from that helicopter, some drivers may elect to exit the highway 

and search for an alternative route.  Drivers caught in a jam are left to their own reactionary 

approaches to getting out of the jam.  Drivers informed about the existence of the jam as they 

approach, or drivers caught in the jam, can benefit by a broader perspective on the extent and 

duration of the jam.  That perspective is provided by the helicopter. 

Congestion may have causal effect over extensive time and space.  Policy may evolve to 

change how the roads are used, or decisions may be made to commit resources to add lanes or 

move an exit ramp, or change a speed limit.  Complex networks can exhibit emergent 

properties that have causal relations with other emergent properties and patterns of response in 

a network.  The number of possible emergent phenomena that may exhibit causal relations 

within and among components of a complex system as a function of structure and local 

mapping functions is simply not known, may not be knowable, and may be effectively infinite.  

The challenge to systems engineering rigor is quite daunting. 

However, challenge to SE should not be dismissed with the argument that MBE and M&S 

work.  It is true that such methods are increasingly critical to systems engineering, and 

advances in M&S are crucial to improvements in MBE.  Below, we even propose M&S as a 

core configuration item in the proposed material solution to mitigate EFM.  But, in truth, we 

use M&S in this context because we have no alternative.  We use it specifically to generate 

systems dynamics so we can observe them because the formal mathematics do not exist.   

The actions taken by any control system are predicated upon an abstract representation (a 

model) of the system under control.  In most cases, the model is implicit in the details of the 

system design.  For example, in an electromechanical thermostat, the spring-like mechanism 

that controls both the display of temperature and the trigger for a Heating, Ventilation and Air 



 

Conditioning (HVAC) system, entails many abstractions: the concept of temperature, not to 

mention the relationship between the abstraction called temperature, and the physical distortion 

of the spring, the scale printed behind the indicator, and the purpose for the system. 

The thermostat example represents an abstraction of a relatively static (or at least slow 

changing) thing we call “temperature.”  The important point for present purposes is the fact that 

all control systems predicate action on a model.  The character of the model, and the imperfect 

mapping between features and behaviors of the model and the thing being controlled (e.g., 

traffic in the NAS, temperature in a room), is the key here.  In particular, when modeling a 

complex system, it is the dynamics (i.e. the behavior) of the modelled thing that matters.  Given 

changing inputs, does the model generate outputs that conform to observations and/or 

expectations (that is, does the model behave appropriately)? 

Dynamical systems can be analyzed by mathematical modeling (e.g., with partial differential 

equations), or by digital simulation.  Math modeling is useful for some purposes, such as 

describing the behavior of an aircraft in response to perturbations of the air mass in which it is 

flying.  However, math modeling breaks down in one particular situation, when there is 

uncertainty about the thing being modeled.  In that case, we resort to simulation (often with 

probabilities as a means for “quantifying” the uncertainty).  There are no other practical 

alternatives. 

Simulation, in effect, embodies the collective knowledge about a complex system in a form 

that renders it observable.  Yet, simulation can only provide an imperfect view of a complex 

system.  Simulation is built up by composing a system from smaller parts that we can represent 

with some modicum of comfort.  The problem is, even for the simplest dynamical systems 

comprising only a few parts, it is impossible to predict mathematically how the total integrated 

system will behave.  That, indeed, is why we use simulations – to generate behavior and expose 

it to observation and analysis as a way of gaining insight into the behavior of a system. 

Without delving further into the mathematics, two important limitations apply here.  These 

limitations are introduced above, and summarized here for reference: 

 There are an infinite number of possible models to account for any finite set of 

observations.  The model of the system that predicates control action has a high 

probability of being wrong.  That is, an infinite number of parameters can be 

added to a model and still not be able to prove with certainty which parameters 

matter, or which are just plain wrong.   

 The mathematics do not exist to predict the dynamical properties of a composed 

system…so we cannot know all of the possible behaviors a system might 

exhibit without generating them and enumerating them.  A system with as few 

as fifty (50) components can generate more possible states than there are 

elementary particles in the universe.   

This last point, the extremely high number of possible states that a complex system can assume, 

is compounded by the fact that states are themselves abstractions.  Moreover, some unknown 

(and unknowable) number of states are emergent, that is, they arise from local interactions, and 

they may have causal relations with both local and other emergent states.   

The totality of states that a system may assume is known as the system’s phase space.  A given 

set of elementary components may be composed in such a way that they will generate multiple 



 

discrete phase spaces.  Once in a given phase space, it is not possible for the system to 

transition to a different phase space. 

On the basis of the analysis outlined above, it is reasonable to conclude that complex systems 

will be capable of entering dynamical regimes that were not foreseen when the system was 

developed.  No amount of testing and evaluation of components prior to deployment will 

obviate the ability to detect, diagnose and redress emergent failure modes (EFM). 

EFM:  What to Do about It 

Because EFM are inevitable, preventive measures are ultimately futile.  Exhaustive test and 

evaluation (T&E) has value, but it cannot eliminate the possibility of EFM.  Hence, system 

design must incorporate features that mitigate the effects.  How can that be, given that it is 

impossible to predict EFM?  The only viable option is to implement monitoring capabilities to 

ensure that the purpose of the system is being served, and to isolate and diagnose deficiencies 

when it is not. 

The concern here is not whether a hard-wired approach is better than an SOA approach; rather 

the implementation of detailed planning pursuant to any approach.  By definition, new systems 

will embody new, untried architectures and will have new properties.  By considering 

fundamental properties of complex systems we reach a startling conclusion:  looking back on 

how systems operated in the past may not inform how systems will behave in future.  Lessons 

learned will have limited utility when looking forward at the next generation of systems. 

As Figure 4 illustrates, a human-machine dyad can be viewed as a nonlinearly coupled set of 

processes, each of which has input, processing and output components (from Colacioppo, 

2015).  Human perception, cognition and action is loosely analogous to computer controls, 

computing, and display.  In modern systems, most of the actions from the human-machine dyad 

are implemented by way of the machine, through insertion of data on a network. 

 

Figure 4.  Components of a human-machine dyad. 

Control systems are central to new complex designs and can be viewed as networks of 

human-machine dyads, as illustrated in Figure 4.  This perspective should be kept in mind as 

one considers that information about system health originates as sense data in the infrastructure 

and propagates through various layers of decision-making authority, as illustrated in Figure 4.  

The information about infrastructure status is processed in comparison with models.  Action 

plans are developed and implemented based on those results and the available standard 



 

operating procedures (SOP) where available.  Where SOP is not available or prescribed for a 

given situation, new procedures are developed and implemented in a trial and error fashion.   

Human interaction with Automation is Uncharted Territory 

Operations and maintenance activities are control processes.  As a system deviates from its 

design parameters; some manifestation of a deviation becomes apparent (preferably, indicators 

are displayed to operators and maintainers, and are detected by them); actions are taken for the 

purpose of reducing the deviations and returning the system to a nominal condition consistent 

with the design parameters.  

Figure 5(a) illustrates a conventional engineering model of a closed-loop control process – the 

control-theoretic model.  Figure 5 (b) shows an extension of that model to accommodate 

components in the structure of the maintainer’s control problem. In Figure 5(a) a forcing 

function r is compared to the output from the controlled plant as sensed by one or more 

processes F, and an error signal (deviation from expectation) e is provided to the control 

process C.  A command u is computed and asserted to the controlled plant P.  The response of 

the system y is then evident in the behavior of the system as it interacts with its environment, 

and as sensed in F.  The component functions represented in Figure 5 (a) may be considered the 

minimum necessary to construct a working control system.  It is useful to note that there is an 

implicit model of the process captured in the summation of forcing function r and system F.  

Indeed, the specific parameters measured, and the specific summation algorithms that collapse 

those measures into the error signal imply some particular attention for some particular 

purpose.  The issue of purpose or intent of the control process is external to the model in a 

conventional control process. 

In Figure 5 (b), the concept represented in (a) has been elaborated with the minimum necessary 

and sufficient functions to establish control over a process in which the error signal e is not 

simply a summation, but requires induction to parameters that are not present or known 

beforehand.  (For simplicity, we treat abduction as a special form of induction that involves 

reasoning from evidence to an hypothesis that did not exist prior to confronting the reasoning 

problem.  The structure of an abduction problem is similar to classicial induction that entails 

reasoning from evidence to an existing hypothesis.  The way induction and abduction are 

accomplished by a system are probably not the same, since abduction requires the additional 

step of synthesizing the hypothesis.)  In short, the distinction between the control processes in 

(a) and (b) of the figure concerns the explicit presence in (b) of component processes designed 

to resolve the uncertainty associated with control to achieve some multi-parametric purpose for 

which not all parameters are known at the inception of the control process. 

 

Figure 5.  Extension of control theory to intelligent control. 



 

It is informative to analyze the essential abstract character of the control process illustrated in 

Figure 5 from a mathematico-logical perspective.  The goal is to identify the necessary and 

sufficient components that comprise any control system.  We take as a point of departure the 

perspective of a classical school of psychology – cognitive psychology.  After all, 

psychologists study behavior.  Behavior is another term for dynamics.  Random behavior we 

call noise, and often try to minimize it.  All non-random behavior serves a purpose.  Hence, the 

study of purposeful behavior should provide insight into dynamics of complex systems.  

Behavior is controlled change to a purpose.  Hence, all behavior is a form of control process. 

The logical structure of any closed-loop control problem is illustrated in Figure 6.  The top 

illustration in Figure 6 (a) depicts the most elementary observations about control systems, that 

they have inputs and generate outputs, and that there must be some boundary between input 

and output processes, as the energy impinging on the system (the stimuli) differs from the 

energy emitted by the system (i.e., its responses).  The middle and lower illustrations in Figure 

6 (a) expand the boundary between input (S) and response (R) processes, to illustrate that of 

necessity, there must be processes that resolve induction.  The middle illustration (S-O-R) 

expands the boundary between S and R processes in the depiction above, indicating that there 

must be some intervening organizing (O) processes between the S and the R processes.  For 

example, the same S may elicit a different R as a result of intervening experience and feedback.  

The bottom illustration of Figure 6 (a) expands the O to reflect that it must comprise distinct 

components, as there are two separable mappings evident.  Mapping from stimulus to an 

internal representation (often called an interpretation or situation awareness), and mapping 

from that internal representation to a response (also called decision making).  The structure of 

both of these mappings is of the character of a logical induction. 

 

Figure 6.  Logical structure of closed-loop control. 

Logical induction is the character of the problem of reasoning from a finite set of observations 

to some general theory to account for those observations, in this case, an internal 

representation.  Evidence for the presence of this inductive process can be found in the 

transformation of impinging energy.  Energy emitted by the control system differs in form and 

organization from that impinging on the system, yet there are observable regularities between 

inputs and outputs.  Energy in many forms impinges on the system and is mapped more or less 

systematically to a much smaller set of energetic structures emitted by the system.  This 

systematic filtering and mapping of energy from (perhaps infinite) form on input, to much 

more limited form on output (the behavior of the control system), indicates that the system is 

resolving the induction problem (mapping from many to few); from a large number of specific 

S conditions to a small set of R.  



 

The step from sense data to internal representation is a logical induction.  The transformation 

from stimulus form to response form indicates that there is some sort of internal 

mapping/representation present in the system.  Both humans acting in a control capacity, and 

automated control systems, resolve this inductive step.  How they accomplish that induction is 

the subject of much research, but it is certain (at this stage) that they solve the problem by 

different means.  That is, humans and machines differ in their ability and approaches to resolve 

induction problems.  As Fitts (1951) observed, humans are better than machines at inductive 

reasoning.  There is no incontrovertible evidence to the contrary in over 50 years of research 

since Fitts’ observation; it can be taken as a principle for analyzing and designing systems. 

In addition to Fitts’ well-established principle, from the discussion above, a precept can be 

gleaned.  In any control system, human or machine, there is, of necessity, some sort of internal 

representation (a model) of the control problem.  When analyzing a control system, it is 

reasonable and pertinent to ask where the model resides, how was it developed, and what 

parameters are represented in that model?  If the answers to these questions are unclear, the 

analyst can conclude with some confidence that the maintenance system or process being 

analyzed is incompetent. The control system must include appropriate allocation of function 

and be predicated on an architecture that achives the desired outcome.  This allocation can then 

be captured in requirements for the design team. 

Intelligent Control Theory 

The approach outlined here is not proposed as a perfect solution to EFM – rather, it is proposed 

as a framework for the only viable approach to solution.  In short, when you cannot possibly 

eliminate uncertainty, then you must bring humans into the control loop.  A control loop that 

brings input data into contact with the mission or purpose of the system is reasoning beyond the 

data.  That part of the control process is, by definition, an induction.  It has been documented 

for over 65 years that humans are far and away better than machines at solving induction 

problems.  Moreover, because it is not possible to know ahead of time all of the parameters of a 

control problem in a complex system, there is a continuing requirement to abduce new 

parameters in the model.  There is no rigorous closed-form solution to abduction.   

In a conventional control process (Figure 5 (a)), intent is embodied in the summation and the 

engineered characteristics of the various boxes.  In the intelligent control process of Figure 5 

(b), intent is introduced into the process by the induction authority.  Because there is no 

closed-form solution to an induction problem, solution always entails the issue of intent.  The 

mathematical basis for this assertion can be traced to research on symbolic logic and the 

abstraction of mathematics itself.  The development of that argument is clearly beyond the 

scope of the present paper and the reader is encouraged to explore classical work on 

computability (cf, Gödel, 1936), the Church-Turing hypothesis and the development of lambda 

calculus by Alonzo Church.  The gist of this argument is that a solution to induction is not 

computable from the symbols available solely in the induction problem (Post 1947).   

The extension of conventional control theory to accommodate the problem posed by induction 

(cf Boyd, 1977) is referred to here as intelligent control theory.  This theory does not posit how 

intelligence is provided, only that something we choose to call intelligence is the ingredient 

required to solve the induction problem.  In the same vein, the model in Figure 5 does not 

pretend to account for how intelligence is accomplished, only how that intelligence (however 

provided by human, software and/or hardware sources) is integrated into a control process. 



 

As illustrated in the figure, all control actions are predicated on a model of the process under 

control.  That is, no actions are predicated on reality, because reality is unknowable to the 

decision-making process.  The internal representation, the state estimator in Figure 5(b), is just 

that:  an estimate of the state of the controlled process.  It is instructive to ponder where that 

state estimate comes from when the topic is maintenance actions.  Often, that state estimate 

resides in the maintainer’s head as a so-called cognitive model.  If the maintainer has not been 

in a position to observe the system, as is often the cause with automation, then the development 

of the state estimate requires access to recent history of the system.  Hence, early in a 

contingency operation, the maintainer will develop a state estimate. 

We assert above that the model is usually in the user’s head.  The process architecture in Figure 

5 does not presume that to be the case.  In fact, the architecture does not presume anything 

about how the functions are accomplished; it requires only that a model of the process under 

control be incorporated into the control process.  In truth, at least two such architectures are 

conjoined in a real application – the human and the machine.  Each must resolve the component 

functions, or obtain the solution from the other.   

System architecture and design must be developed to support this process need by assuring the 

architecture provides the flexibility to support dynamic control based on models held in the 

system constituents (in human users and maintainers as well as in software).  The user’s 

cognitive models should be supported in explicit computer models of the system. 

Conclusions 

EFM are real artifacts of systems design and implementation.  The analysis of complex systems 

(including SOA/SoS) shows the unpredictable and nearly inevitable character of EFM.   The 

paper outlines a principle-based approach that apportions aspects of control processes to 

human and machine components in a way that exploits human strengths to detect, diagnose and 

redress emergent failures provides an approach to solutions.  The recommendation is to ensure 

that a proposed system architecture conforms to the process architecture in Figure 6. 
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